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This study deals with the nonlinear cyclo-geostrophic adjustment of a circular density
front in a two-layer fluid. Laboratory experiments have been performed to investigate
the dynamical evolution of a fixed volume of buoyant water, initially confined
within a bottomless cylinder, which is quickly released in a dense rotating fluid.
This configuration corresponds to a rapid input of potential energy in a geostrophic
fluid layer and reproduces some dynamical processes which occur during oceanic
upwelling or stratospheric warming events. We focus our efforts on the visualization
techniques in order to have simultaneous and independent measurements of both
the horizontal velocity field and the vertical density field. We thus obtained, for the
first time, quantitative measurements of the potential vorticity and the flow balance
after a geostrophic adjustment process. The density profile of the mean adjusted state
observed in the experiment is in good agreement with the prediction of the standard
adjustment theory based on Lagrangian conservation of potential vorticity except in
the frontal region. There, strong three-dimensional motions (plume structures, shocks
and rapid transient instabilities) take place during the early stage of adjustment.
These transient three-dimensional motions could dissipate up to 50% of the initial
energy of the system, especially when the size of the initial density anomaly is close to
or larger than the deformation radius. Therefore, it significantly changes the velocity
and the energy budget predicted by the standard Rossby adjustment. Both the kinetic
energy of the mean adjusted state and the energy transferred to inertia—gravity wave
modes are reduced by these transient dissipative processes.

1. Introduction

The geostrophic adjustment is the first dynamical process which converts a
significant fraction of the potential energy input (thermal or density source) of the
atmosphere and the ocean into kinetic energy. During the rapid adjustment toward a
quasi-equilibrium state, an important part of the initial energy could be transferred
to inertia-gravity waves or dissipated through small-scale three-dimensional motions.
These transient dynamical events play an important role in the inertia—gravity wave
emission and local mixing in the vicinity of atmospheric jets and oceanic currents.
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The first theoretical guidelines for solving geostrophic adjustment problems were
proposed by Rossby (1938) and Obukhov (1949) in the framework of rotating shallow-
water fluid (for a review see Blumen 1972). They assume that any initial unbalanced
state will evolve naturally toward a steady balanced state, geostrophic or cyclo-
geostrophic, satisfying mass and Lagrangian conservation of potential vorticity (PV).
This approach conveniently avoids the time-dependent problem, and gives a prediction
for the final state. However, the final energy of the predicted adjusted state is always
less than the initial energy. Inertia—gravity waves, with zero PV, are then expected
to carry the missing part of the initial energy away from the adjusted state (Gill
1982). This quantitative energy budget is the powerful result of this approach. More
precisely the energy of the balanced state as well as the fraction of energy transferred
to inertia—gravity waves mainly depend on the square of the ratio of the deformation
radius (i.e. the Rossby radius) and the horizontal scale of the unbalanced state, namely
a dimensionless Burger. Two cases are generally distinguished, the mass adjustment
and the momentum adjustment. They correspond, respectively, to initial unbalanced
states which contain only potential or kinetic energy. For the mass (momentum)
adjustment, the energy lost to inertia—gravity waves is an increasing (decreasing)
function of the Burger number (McWilliams 1988; Dewar & Killworth 1990; Boss &
Thompson 1995; Kuo & Polvani 2000).

The question of fully nonlinear geostrophic adjustment in the rotating shallow-
water framework has been recently revisited by means of theoretical (Ford, Norton &
Mclntyre 2000; Reznik, Zeitlin & BenJelloul 2001; Zeitlin, Medvedev & Plougonwen
2003) and numerical analysis (Kuo & Polvani 1997, 1999, 2000). These studies focus
on the reversible—irreversible interactions between the waves and the mean adjusted
flow. In particular, the formation of shocks, which seems to be a generic mechanism
in the rotating shallow-water model, could strongly modify the classical scenario of
geostrophic adjustment and the associated energy budget.

In this context, we performed laboratory experiments to investigate the nonlinear
adjustment of a localized density anomaly in a rotating environment. A fixed volume
of buoyant water, initially confined within a bottomless cylinder, is quickly released in
a dense fluid. Similar experiments (e.g. Griffiths & Linden 1981; Bouruet-Aubertot &
Linden 2002) and numerical simulations (Verzicco, Lalli & Campana 1997; Bouruet-
Aubertot & Echevin 2002) were performed to study the baroclinic instability of a
density front leading to meanders and eddies. As far as we know, a single work
(Holford, 1994) studied the adjustment process in this experimental configuration.
However, in this pioneering study, combined layer depth and velocity measurements
were not possible. The present experiments were made with a slightly different range
of parameters in order to prevent the growth rate of baroclinic disturbances during
the adjustment process. We focused our efforts on the visualization techniques in
order to have simultaneous and independent measurements of both the horizontal
velocity field and the vertical density field. Therefore, we obtained, for the first time,
quantitative measurements of the potential vorticity and the flow balance after a
geostrophic adjustment process.

The mass adjustment performed in these experiments leads to a density front: the
interface between the two fluids intersects the upper free surface. The geostrophic
(Csanady 1979) or cyclo-geostrophic adjusted state (Flierl, 1979) calculated according
to the Rossby adjustment theory contains a strong velocity discontinuity. Therefore,
in this specific case, the predicted final state cannot be reached physically (i.e. for a
dissipative fluid). Hence, our first objective will be to determine whether the system
reaches a stable adjusted state and determine the balance of this state as well as the
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potential vorticity conservation. Another important question we shall address deals
with the energy budget of the adjustment process, taking into account dissipative and
three-dimensional effects.

An overview of the paper follows. The experimental set-up and measurement
techniques are presented in § 2. After a brief dimensional analysis, physical parameters
are introduced in § 3. Then, in §4, we detail the approximations and the calculation of
classical Rossby adjustment theory for an axisymmetric configuration corresponding
to the laboratory experiments. The observed stages of the geostrophic adjustment
are described in §5. Then, we analyse quantitatively in § 6 the slow dynamics of the
density anomaly averaged over one inertial period. The mean state obtained after the
rapid transient process is compared with the predicted state calculated in §4. Besides,
we analyse in detail the PV distribution and the balance of this mean adjusted state.
The energy budget between the initial and the ‘final’ experimental state is evaluated
in § 7 and transient dissipative mechanisms are analysed. We give conclusions in § 8.

2. Experimental set-up

The experiments were conducted on a 1.5m diameter rotating turntable at the
Department of Mechanics UME, ENSTA Palaiseau. The upper plate of this turntable
rotates on a thin air layer in order to reduce friction and avoid all mechanical
vibrations around the inertial frequency. The rotation rate 2 could reach a value up
to 12 r.p.m. We used a rectangular tank 48 cm large (L =24 cm), 130cm long and the
working depth H was varied from 14cm to 30 cm.

To obtain a cylindrical patch of fresh water confined within a transparent bottomless
cylinder, we proceed as follows. We first waited until solid-body rotation of the dense
fluid was reached, then we slowly introduced a fixed volume of fresh water inside
the cylinder at the free surface level. We used three cylinders having a radius R. of
3.45, 5.25 and 8.1cm. These cylinders were made of a thin transparent film having
a thickness around 0.2 mm to avoid strong volume perturbation during lift up. The
initial thickness 4 of this density anomaly was varied from 1 cm to 4 cm. The salinity
of the lower layer was varied from 5 to 40 gl~!.

In order to visualize a vertical cross-section of the density anomaly, the buoyant
water was uniformly dyed with fluoresceine. The region where the buoyant water is
located was then illuminated from above with a vertical laser sheet (figure 1). To
optimize the fluorescent emission of the dye, we used an argon laser having a ray
at 488 nm, which is close to 490 nm the maximum of absorption for fluoresceine in
water. A CCD camera, fixed on the side of the tank, perpendicular to the laser sheet,
was directly connected to a computer system with a frame-grabber card and the
image-processing software NIH Imaget. With this original non-intrusive technique,
we were able to measure the displacement of the interface between the fresh and the
dense water with an accuracy of 0.5mm at an acquisition rate of 25 Hz. Besides, we
could also measure the density field from the fluorescent dye emission (figure 2a).
Indeed, on short time scale (i.e. the time scale of the experiment), the mixing of
both dye and salt is expected to be driven mainly by convection (i.e. turbulent
mixing). Hence, dye and salt gradient are not affected by relative diffusion and they
are therefore proportional. In a first step, we measured the relative fluorescent light
emission (figure 2b) which depends mainly on the dye concentration and the laser

1 Free software developed at the US National Institutes of Health, available at http://rsb.info.
nih.gov/nih-image/.
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sheet intensity. Then, taking into account the vertical distribution of the laser sheet
intensity, we calibrated the light emission to deduce the vertical salinity profile in the
lens (figure 2¢). The continuous density profile was close to a two-layer configuration
with a steep density gradient. The characteristic scale of this density gradient d could
be estimated from the maximum slope of the vertical density profile (figure 2¢). This
density gradient thickness (2-5 mm) was relatively small compared to the initial lens
thickness 4¢ (1-4 cm).

In order to measure the horizontal velocity field, we used a horizontal laser sheet
at 670 nm to lighten small neutral particles dispersed in the whole fluid volume and
analyse the fluid motion with a standard particle image velocity (PIV) technique.
For velocity measurements in the upper lens or the deep layer, the laser sheet was,
respectively, focused 4 mm below the free surface or 2 cm below the transparent
cylinder. For a few experiments, the horizontal PIV and the fluorescent visualization
were used simultaneously. In this case, specific optic filters were fixed on each camera
to detect only the dye emission in the vertical plane and the particles in the horizontal
plane. We were then able to measure at the same time the horizontal velocity and the
interface of the density lens. Hence, we obtained quantitative measurements on the
flow balance after a geostrophic adjustment process.

3. Physical parameters

If we neglect the diffusion of salt and the viscous dissipation, the initial conditions
are fixed by six physical scales, namely: ko, H, R., L, Rp = \/gH /252 the barotropic
deformation radius and R, = ./g*h,/282¢ the baroclinic deformation radius, where
g =(Ap/p)g is the reduced gravity. For all experiments, the cylinder was located
in the centre of the tank, far from the sidewall. The ratio R./L never exceeded
0.33 and we could reasonably neglect the boundary effects. Besides, the barotropic
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FIGURE 2. Measurement of the vertical salinity profile from the fluorescent light emission.
(a) The fresh water initially confined in a transparent bottomless cylinder appears white owing
to the fluorescent light emission and the dense water is black. (b) Vertical distribution of the
light intensity in the central rectangle shown in (a). (¢) The salinity profile can be deduced
from (b) if we perform a careful calibration of the laser sheet intensity along the vertical plane.
The disturbance at z=—3.3cm is due to the light reflection at the bottom of the cylinder.

deformation radius Rp was always one or two order of magnitude larger than R,
and R.. Hence, we assume that L and Rp have only a small impact on the evolution
of the system. Therefore, according to dimensional analysis, the dynamical evolution
of the density anomaly after the withdrawal of the cylinder is mainly governed by
three dimensionless parameters. For comparison with previous studies, we introduce
the Burgers number Bu, the vertical aspect ratio § and the front steepness o:

2
R h h
Bu=(-2), 5=2=2, a=-2.
R, H R,

In order to focus our study on the geostrophic adjustment, it was necessary to
avoid or reduce the growth of baroclinic unstable modes (Griffiths & Linden 1981;
Bouruet-Aubertot & Linden 2002) or barotropic gravity—-Rossby modes (Hayashi &
Young 1987; Sakai 1988; Paldor & Ghil 1991; Boss, Paldor & Thompson 1996)
which could rapidly break the adjusted state. Therefore, we restricted our experiment
to small aspect ratio only § ~0.08-0.1, while the Burgers number and the front
steepness were varied in the following range of values: Bu ~ 0.08-1.5, o ~0.4-1.2.
For comparison, Holford (1994) investigated the nonlinear adjustment of a density
anomaly with § ~0.3-0.6; Bu ~ 0.05-0.2 and « ~0.24.

In order to estimate molecular dissipation and compare our experimental results
with other experiments, we introduce a Reynolds number constructed with the
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maximum velocity and the Rossby deformation radius:
_ Vmade
—

The following results were obtained with Reynolds number in the range Re ~ 250—
700.

Re

4. Rossby adjustment model for axisymmetric density front

In this section, we present the approximations and the calculation of classical Rossby
adjustment theory for an axisymmetric configuration corresponding to the laboratory
experiments (figure 1). We use here an asymptotic expansion of the two-layer model,
to extend the reduced gravity model studied by Flierl (1979) and Killworth (1992) in
which the motion in the lower layer was neglected. We assume here that:

(i) Viscosity and dissipative effects are negligible;

(i) Each layer follows the rotating shallow-water equation under the reduced-
gravity approximation;

(iii) The system reaches a final steady state.

One of the main concerns about using the shallow-water model is its simplification
of the vertical flow structure, especially during the initial stages of adjustment (see
figure 3, for instance) and in the frontal region where the upper layer thickness
vanishes to zero. The discrepancy or the agreement of this simple model with the
experiments will be analysed in §6.

In order to obtain a dimensionless set of equations, we use /o as a vertical scale
and R; as a horizontal scale. Besides, for the upper (deep lower) layer we use
2820R (82820 R,) as a velocity scale and pog”ho(8p0g"ho) as a pressure scale.

If we look for an axisymmetric steady state, which is the solution of the
shallow-water equations, we necessarily obtain a radially symmetric motion in cyclo-
geostrophic balance in both layers (index 1 for the upper and 2 for the lower)

vt

7+U1=3r7€1, (4.1)
U2

8= + v, =9,m, (4.2)
r

and the pressure continuity at the interface gives
T —51’C2=h, (43)

where h is the dimensionless thickness of the upper layer. Then, the Lagrangian
conservation of potential vorticity (PV) implies a constant value of PV for all fluid
parcel within the upper lens:

1+ 0v +vi/r
I —
where 7, is the final radius of the density lens. While, in the lower layer, there are
two regions of constant PV

qi(r <rp)=1 (4.4)

é 1+5(3,U2+U2/r)
< = =
gl < roy= 2 = LEOOR T walT) (43
1456
T ] (46)

where r, is the final radius of the PV jump.



Nonlinear adjustment of density fronts. Part 1 341

P — —'""‘r*""*—"""T"*""'-""il-S
(@) "1 1'
- " |
| ;1.0
| |
| |
1 {0.5
T
I
Bu=5 | &

-1.5 I —— 1 1 | I 1.5
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
/R,
1.0 —r
Lo
i
0 8!
O 4 -
-
nL e
| -
. r 'f
%’J O.6| ”
5] |L o’
.g | ” U/UO
= [ e K/ U
&) 047 - - - Ewaves/UO
I ”
”
”
02! ="
: P
- i
E: — e
0 md
107! 10° 10!

Bu

Ficure 3. Final steady state according to the standard adjustment model § 4. (a) Two adjusted
velocity (dashed line) and height (solid line) profiles resulting from the same initial density
anomaly (h = ho, r = R,) are plotted for two different deformation radii Bu =0.05 and Bu =5.
(b) Relative potential U/Uy, kinetic K/Uy and wave energy Eqwe/Uo of the final adjusted
state as a function of the Burgers number.

At the first order of expansion, for small § <1 the upper layer does not feel
the lower layer and according to (4.1), (4.3) and (4.5) we obtain an equation on v,
independent of v,

1 2
—0,(r9,(rv1)) — = — <v1 + ﬁ) =0, (4.7)
r r r
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with the boundary conditions
vi(r=0)=0, (4.8)
h(r=ry;)=0= (Brvl ~|—% +1>(r=rf)=0. (4.9)

For a given radius r;, we can solve (4.7), (4.8) and (4.9) numerically with standard

shooting methods. Then, the angular momentum conservation or mass conservation

both give the same implicit relation between r; and the initial radius of the cylinder
re:

re=r; +2rpv(rp). (4.10)

For small §, the lower layer is controlled by the upper-layer dynamic. The radial

displacement of fluid (order §) can be neglected and therefore according to (4.5) and
(4.6) we obtain

v+ v /r=1—h>0 (r<r), (4.11)

with
v (r=0)=0, (4.12)

and
v, +v/r=—h<0 (r>r., (4.13)

with
va(r = rp)=0. (4.14)

Hence, the velocities vy, v, and the height h(r) profiles of the adjusted density lens
are fixed by a single parameter r. = R./R; = Bu~"/?, provided that § < 1. Examples
of velocities and height profiles are given in figure 3(a) for the same initial state and
two different deformation radii corresponding to Bu =0.05 and Bu =5. For small
Burgers number we expect an axisymmetric jet (or large-scale ring) whereas for large
Burgers number an eddy (close to solid rotation) is expected.

Once we obtain vy, v, and h, the relative potential and kinetic energy of the steady
adjusted state can be calculated using

U s
— = 2Bu/ h?rdr, (4.15)
Uy 0
K Vf rn
— =2Bu / v%hrdrH/ vi(1 —8h)rdr|, (4.16)
Uy 0 0

where Uy =mpog"h>R? is the initial energy of the system. A simple energy budget,
calculated at the first order in §,

Uy—E

e ry rf
= 2Bu {/ rdr —/ (h2 + hvlz)r dr] = —2Bu/ hvirtdr >0, (4.17)
Uo 0 0 0

shows that there is an energy deficit between the available potential energy U, and
the final energy E =U + K of the adjusted lens. Hence, the steady solution given by
(4.4), (4.5) and (4.6) cannot be an exact solution of the problem and time-dependent
motion must be examined. In standard adjustment theory, fast components of motion,
especially inertia-gravity waves, are expected to contain the missing part of the
energy (Gill 1982). The repartition between potential U/ U, kinetic K /U, and wave
energy E,.../Uo 1s plotted in figure 3(b). For small Burgers number, there is a weak
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FIGURE 4. Dynamical evolution of the density anomaly (vertical cross-section) corresponding
to ho=2.5cm, R, =5.25cm, H =30cm, 20 =0.96rads™' and Ap/p =0.016. The dark rays on
the right-hand side of the image are experimental shadows produced by the upper fixations of
the cylinder. (a) t =0.5T, (b) 0.8T, (c) 3Ty, (d) 3.4T.

energy transfer from the initial potential energy to the wave energy, while for large
Burgers number, the initial energy is almost totally transferred to the wave energy.

5. Stages of geostrophic adjustment

Three stages were observed during the adjustment process. Just after the rapid
withdrawal of the transparent cylinder, the fresh water spreads radially in a similar
way to the gravity current (figure 4a). During this initial stage, the flow is fully three-
dimensional and the effects of rotation are expected to be weak. After approximately
half the inertial period T =m/2, the radial extension of the density front is stopped.
Similar results were found by Ungarish & Huppert (1998) and Hallworth, Huppert &
Ungarish (2001) for rotating axisymmetric bottom gravity currents and Bouruet-
Aubertot & Echevin (2002). By means of numerical and laboratory investigations,
they found that the maximum radius of the front is first attained at ¢ ~0.5-0.857.
Once the maximum propagation is achieved, we observe in our experiment a strong
reverse flow close to the front. This second stage corresponds to a radial contraction of
the density anomaly. During this contraction, steep jumps in the interface (analogous
in their shape to hydraulic jump or shock) may appear (figure 4b). Identical features
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were also observed in the Navier—Stokes numerical simulations labelled VIR-1 in
Hallworth et al. (2001). After about two inertial periods T, the density front reaches
an equilibrium characterized by standing wave mode superimposed on a mean state
(figure 3c,d). The amplitude of these oscillating modes could be small or large
depending on the initial state.

The characteristic time of the first two stages described above does not depend
on the Burgers number Bu or the front steepness «. In all our experiments, the
third stage, corresponding to a mean adjusted state coupled with standing oscillating
modes, is rapidly reached after approximately one or two inertial periods of rotation.
These results agree with Mahalov et al. (2000) who also found that the inertial period
T; is the characteristic time of the transition from a bottom density current to a
geostrophic front.

In the present experiments, the interface between the two fluids intersects the free
surface. Hence, unlike the standard Rossby adjustment problem (Gill 1982) inertia—
gravity waves cannot propagate away from the region of the initial density anomaly.
Therefore, the separation between the adjusted state and the wave motion is not
direct. However, using a time averaging at one or two T;, we can separate the slow
dynamics of the mean profile and the fast dynamics of the oscillating modes.

6. Mean adjusted state

In this section, we analyse the slow dynamics of the density anomaly averaged over
one inertial period Ty = 1/£2y. This temporal averaging filters out the fast dynamics on
both the density interface and the azimuthal velocity. The mean state obtained after
two inertial periods is then compared to the prediction of the standard adjustment
model described in §4. According to this model the adjustment is controlled by a
single parameter: the Burger numbers Bu. Hence, we perform several experiments
varying only the Burgers number while the steepness parameter « =0.7-0.8 and the
depth ration § remain constant.

6.1. Profile of the density interface

The averaged profiles of the density interface are displayed in figure 5 for different
values of the Burgers number Bu=0.048, 0.4 and 1. We plot the mean interface
at two different times: at r ~2T, just after the withdrawal of the cylinder and
five to ten inertial periods later. We observe that the mean density profile remains
approximately constant during this period. Hence, even if a perfect steady state cannot
be obtained for long times (10-1007,) owing to the Ekman decay, the horizontal
viscous dissipation or the baroclinic instability, the mean profile of the mass anomaly
reaches a quasi-equilibrium state from approximately 27, to 107;. The averaged
density profile measured at this stage is in correct agreement with the adjusted state
calculated in §4.

However, to quantify more precisely the accuracy of the adjustment model for
various values of the Burgers number, we use two dimensionless lengths that
characterize the shape of the mean adjusted profile. The first one is the ratio i/ hg in
the centre of the lens, where % is the mean thickness of the adjusted profile at r =0
and hg the initial thickness of the density anomaly. The second one is the relative
front displacement d/Rd, where d = R; — R, is the difference between the radius of
the adjusted lens R, and R, the initial radius of the density anomaly. According to
figure 6, the thickness of the adjusted lens is predicted well by the standard adjustment
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FIGURE 5. Mean profile of the density interface averaged over one inertial period for (a) Bu =
0.048, (b) 0.4 and (c) 1. The initial state confined within the cylinder is plotted with a thin
solid line while the cyclo-geostrophic adjusted state predicted by the standard scenario of
adjustment is plotted with a thick solid line.
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FIGURE 6. (a) Relative lens thickness h/hy at r=0 and (b) relative front propagation
(Rf — R.)/R; compared with the standard adjustment model (thick solid line) at various
Burgers numbers, ho(R.) is the initial thickness (radius) of the density anomaly.

(figure 6a) while the radial extension of the front is underestimated by the inviscid
model (figure 6b).

6.2. Azimuthal velocity

Typical particle trajectories averaged over one inertial period, at r=2T, after
the withdrawal of the cylinder, are displayed in figure 7(a). The mean motion
is axisymmetric and the angular momentum conservation implies an anticyclonic
velocity profile in the upper lens (figure 7b). Besides, we detected a cyclonic motion
in the deep lower layer which was one order of magnitude smaller than the motion
in the upper lens. We check here that we could reasonably neglect the lower-layer
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FIGURE 7. (a) Particle trajectories averaged over 1 s for Bu=0.4, § =0.08 and o =0.69 showing
a strong axisymmetric motion within the density patch, with almost no velocity outside.
(b) The orthoradial velocities are obtained from CIV processing in the upper lens and the deep
lower layer. @, upper layer; O, lower-layer.

velocities during the stages of adjustment. This approximation is made in the reduced
gravity model used for the cyclo-geostrophic adjustment formulated in §4.

The averaged velocity profiles in the lens are displayed in figure 8 for various
Burgers numbers Bu=0.11,0.4 and 1. According to the inviscid adjustment model
the velocity reaches its maximum and is discontinuous at the edge of the front,
this is obviously unrealistic in a physical system where dissipative processes occur.
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The maximum velocity observed in the laboratory experiment was not located at
the edge of the density front and its amplitude was smaller than the predicted one
(only 30%-40% according to our measurements). To understand what could be
the main dissipative mechanism involved here, we look at the characteristic length of
the decreasing velocity region L,. According to the figure 8, this latter scales with the
deformation radius R; = ./g*ho/2529 which is much larger (1.7-3.5cm in the present
experiment) than the horizontal viscous diffusion length L, = /vT; (2-4 mm). Hence,
the velocity profile is not smoothed by a standard horizontal dissipation, a Laplacian
operator for instance. Besides, L, remains almost constant for a few inertial periods
and does not follow a diffusive law such as L3 oc 7. Therefore, it seems that the main
dissipation occurs during the first stage of adjustment. Indeed, L, scales with Ry,
which is the characteristic scale of the front propagation.

In order to estimate the vorticity within the lens, we fit the velocity profile with an
order-nine polynomial. Then, we derive the fitting polynomial to obtain the cylindrical
vorticity

a)(r)=8,v+;. (6.1)

We display, in figure 9(a), the profile of the local Rossby number deduced from the
polynomial fit,
_ ()
N 2907‘
and, in figure 9(b) the profile of the dynamical Rossby number constructed with the
vorticity:

Ry

(6.2)

_wl(r)
€= 2

The local Rossby number R, estimates the amplitude of the centrifugal force with
respect to the Coriolis force in the cyclo-geostrophic balance (4.1). As expected for
small Burgers numbers, curvature effects tend to be small and we can neglect the
centrifugal term. In other words, the mean steady state is expected to become close
to a geostrophic balance when R, is large in comparison with R;. Note that Ry is
small (below 0.1) for the case Bu =0.11, while it reaches a moderate value (0.15-0.2)
for Bu=1 (figure 8a).

The dynamical Rossby number ¢ estimates the amplitude of the relative vorticity
w(r) with respect to fy=282y. According to figure 9(b), this latter term is of finite
value and the central part of the lens is surrounded with a ring of cyclonic vorticity
(ie. a shielded vortex). The isolated nature of the lens, no circulation outside the
density anomaly, implies this cyclonic vorticity ring. Nevertheless, the finite value
of the dynamical Rossby number could strongly affect the frequency range and the
structure of inertia—gravity waves present within the density anomaly (see Part 2,
Stegner et al. 2004). Besides, it was shown (Stegner & Dritschel 2000) that ¢ is a
key parameter which controls the ageostrophic effects in the one-and-a-half rotating
shallow-water model. When the dynamical Rossby number is of order 1 a cyclone—
anticyclone asymmetry affects the growth rate of unstable modes. The departure from
geostrophy, in this reduced gravity model, tends to make anticyclonic structures less
unstable than cyclonic ones.

(6.3)

6.3. Cyclo-geostrophic balance and non-hydrostatic effects

An important issue of this study was to characterize, for the mean adjusted state,
the balance between the velocity and the density fields observed in the laboratory
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FIGURE 9. (a) Local Rossby number and (b) dynamical Rossby number obtained from a
nine-order polynomial fit of the velocities profiles plotted in figure 7. ——, Bu=0.11; ---,
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experiments. The double laser sheet set-up described in §2 was necessary to obtain
quantitative and simultaneous measurements of the horizontal velocity and the density
lens profile. According to figures 5 and 8 the mean adjusted state is not in perfect
agreement, especially the velocity field, with the steady state predicted by the classical
Rossby adjustment theory (§4). Nevertheless, this mean adjusted state could follow a
perfect geostrophic or cyclogeostrophic balance defined by (4.2).

We could ask about the error made when one of the two fields (height or velocity)
is inferred from the second one according to a prescribed balance relation. On one
hand, we compared, in figure 10(b), the measured velocity profile with the geostrophic
and the cyclogeostrophic velocities derived from the best polynomial fit of the density
lens profile, figure 10(a). Such types of reconstruction are often used in oceanic
data analysis where direct velocity measurement obtained from buoy trajectories or
local current-meter are sparse. Therefore, the velocity field is generally reconstructed
according to geostrophic or quasi-geostrophic balance from salinity and temperature
fields measured at a higher resolution. In our laboratory experiments, according to
figure 10(b), such reconstructed velocities overestimated the real velocity in the frontal
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FiGure 10. (b) Measured velocity in comparison with the cyclo-geostrophic or geostrophic
velocity profile deduced from (a) the observed height profile. (d) Measured density profile
in comparison with the cyclogeostrophic or geostrophic height profile deduced from (c) the
observed velocity profile. 0, t = 1.57.

region and the extension of the cyclonic vorticity region is poorly reproduced. On
the other hand, if we reconstruct the lens profile (figure 10d) from the polynomial
fit of the velocity profile (figure 10c) we underestimate the thickness of the density
anomaly. Hence, the mean adjusted state does not follow an exact geostrophic or
cyclogeostrophic balance.

In order to quantify the deviation from the cyclogeostrophic balance we calculate
the following error function:

U2

8
e(r) % o,h —v e (6.4)

We compared the amplitude of the error function with the horizontal velocity.
According to figure 11, the deviation from the cyclogeostrophic balance becomes
significant close to the frontal region where the density interface intersects the free
surface. These strong values of the error function indicate that the horizontal pressure
gradient does not follow the hydrostatic equation (4.3) in the frontal region. This
discrepancy could result either from non-hydrostatic motions or from the limit of
validity of the shallow-water layer formulation. On one hand, we do not observe steady
non-hydrostatic motion leading to significant vertical and radial flows. Hence, the only
non-hydrostatic motions are related to (unsteady) internal wave activity, which could
lead to irreversible breaking events in the frontal region. Such mechanisms transfer
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FiGure 11. Deviation from cyclogeostrophic balance for (a) Bu=0.11 and (b) 0.4. —, error

function on velocity (equation (6.4)), O, measured velocity.

horizontal momentum to the mean flow and therefore could induce a forcing term
in the balanced momentum equation (4.1). On the other hand, at the edge of the
density anomaly the upper-layer thickness vanishes and therefore we cannot neglect
the thickness of the interface dp in comparison with Ag. For instance, if we consider
the case Bu =0.4 (figures 5b and 8b), in the frontal region when the velocity reaches its
maximum value (r ~7cm) dp ~3 mm while 7 ~7mm. Hence, the continuous density
stratification should be taken into account which implies significant deviation from
the pressure balance (4.3) and the two-layer shallow-water formulation. However,
according to the spatial and temporal resolution of experimental measurements,
we can hardly quantify the vertical variations of the density and velocity fields in
the frontal region. Thus, we could hardly distinguish between these two possible
explanations.
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FIGURE 12. Potential vorticity profiles for (b) Bu=1, (c¢) 0.4 and (d) 0.11, deduced from
independent measurements of velocity and height fields. These two profiles are fitted with
high-order polynomials (a). - - -, PV profiles predicted by standard adjustment (§4); —, profiles
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6.4. PV conservation

The conservation of potential vorticity is the keystone of geostrophic adjustment
theory (Rossby 1938; Obukhov 1949; Blumen 1972) which provides a means for the
determination of an adjusted state from a given initial state (see §4). As far as we
know, this conservation principle was never checked in laboratory experiments. Hence,
we focus our efforts to obtain the PV profile after adjustment using independent
measurements of both the horizontal velocity field and the vertical density field. First,
we fit these two axisymmetric fields with a high-order polynomial (figure 12a). Then,
we calculate, according to the fitting polynomial, the vorticity and the PV profile
for various Burgers number (figure 12). In the low Burgers limit, when the front
displacement remains small in comparison with the initial size, the PV is conserved in
the centre of the density anomaly (figure 12¢, d). However, for all cases, dissipation
occurs in the frontal region. Note that a deficit of anticyclonic vorticity leads to
an increasing PV. Hence, even if the PV has higher values (solid line) than the
PV predicted by the inviscid adjustment model (dashed lines), it is the result of a
dissipative process. In fact, the PV gradients are smoother than the predicted ones.
We can also note that all the PV profiles in figure 12 are very close to monotonic.
Nevertheless, for large Burger number (figure 12b) there is an inflection point in the
PV. This is due to the cyclonic vorticity ring, observed in the experiments (figure 11),
which induces at least one inflection point in the vorticity profile close to the centre.
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Bu UEO (measured) UEO (predicted) 50 (measured) % (predicted)
0.11 0.715 0.66 0.045 0.107
0.4 0.497 0.46 0.076 0.151
1 0.37 0.32 0.03 0.148

TaBLE 1. Energy budget of the mean adjusted flow.

For small Burgers numbers, the PV is dominated by the density profile 4(r), while for
large Burgers number the PV is mainly controlled by the vorticity w(r). Hence, we
expect an inflection point in the PV profile for finite Bu. Therefore, according to the
generalization of the Rayleigh instability criterion for the quasi-geostrophic model,
such a density anomaly having a non-monotonic PV profile could be unstable to
barotropic disturbances. Of course, for intermediate shallow-water « =0.4 — 1.2 and
a finite value of the dynamical Rossby number ¢ =0.2 — 0.4 the quasi-geostrophic
model is not strictly valid. However, it gives a first-order approximation of the
slow dynamics. This could explain why Griffiths & Linden (1981) never found a
stable density anomaly in their experiments even for large Burgers number where
large-scale baroclinic disturbances are (in principle) not unstable. In this case, the
inflection point in the PV profile could be the source of a mixed barotropic—baroclinic
instability. Besides, we can also note that the dynamical Rossby number reaches a
finite value (e ~0.4) for large Bu (Bu =1). Hence, short-scale ageostrophic gravity-
Rossby instabilities (Hayashi & Young 1987; Sakai 1988; Paldor & Ghil 1991; Boss
et al. 1996) could be dominant when the large-scale baroclinic instability cannot
occur.

7. Energy budget and transient dissipative mechanisms

The quantitative energy budget and the estimate of the fraction of the initial energy
which is transferred to the wave motion is the strong result of the standard Rossby
adjustment theory (§4). In laboratory experiments, as in oceanic or atmospheric
flows, dissipation and three-dimensional motions could change this energy budget
significantly. In order to quantify the energy dissipation that occurs during the
adjustment, we need to measure precisely the potential, the kinetic and the wave
energy.

The potential and kinetic energy of the mean adjusted state were calculated from the
measured density and velocity profiles (figures 5 and 8) according to equations (4.15)
and (4.16). On one hand, the potential energy of the mean adjusted flow was very close
to or slightly higher than the value predicted by the inviscid adjustment theory (see
the data of table 1, corresponding to the three cases Bu=1, 0.4 and 0.11). This is a
direct consequence of the results presented in figure 5 where the experimental profiles
of the density interface were in good agreement with the predicted ones. Besides, the
mixing induced by the early stages of adjustment, see figure 4 for instance, tends
to increase the potential energy of the system and could therefore explain the slight
deviation of the potential energy measured in the experiments. On the other hand, the
mean adjusted state exhibited a strong deficit of kinetic energy in comparison with
the predicted one. This deficit increases with the Burgers number (from 50% to 70%)
and is directly related to the smoothed velocity profile plotted figure 8. Indeed, in
the experiments, unlike the Rossby adjustment prediction (§4), the maximum velocity
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E\vaves Edissipated (

A
Bu 7[0] (measured) T (predicted) Us estimated)
0.11 0.117 0.233 0.123
04 0.175 0.3890 0.252
1 0.09 0.532 0.51

TaBLE 2. Estimate of the wave energy and dissipation.

was not located at the edge of the density front and its amplitude was significantly
reduced. An estimation of the energy accumulated in the oscillatory wave motion is
required to conclude whether the missing kinetic energy was dissipated or transferred
to the wave motion.

Assuming that the wave energy, released during the adjustment, corresponds mainly
to rapid quasi-inertial oscillations of the density interface we compute the maximum
fluctuation of the potential energy according to (4.15). The oscillations of the density
profile are of finite amplitude and in phase opposition with the oscillations of
the velocity profile (see Part 2 for more details). The energy is then periodically
transferred from potential to kinetic energy. Hence, if we just measure the potential
energy fluctuation, we expect to quantify the whole wave energy. The latter and the
wave energy predicted from the standard Rossby adjustment are compared in table 2.
Here again, we measured a strong deficit in energy (50% to 80%) which increased
with the Burgers number. Hence, a significant fraction of the initial energy is both
missing in the wave energy and the mean kinetic energy of the adjusted state. A simple
budget of the potential, the kinetic and the wave energy measured in the experiment
gives an estimate of the dissipation in the early stage of adjustment. As was discussed
in §6.2, the molecular viscosity cannot explain the rapid dissipation (less than 2 Tf)
of such large fractions (12%-50%) of the initial energy.

A rapid barotropic instability, previously shown by Holford (1994), occurs at the
edge of the density front and exhibits small-scale three-dimensional structures. This
initial shear instability of the horizontal velocity at the edge of the density patch is
probably the dominant mechanism which extracts kinetic energy of the flow. In order
to visualize the rapid growth of small-scale asymmetric perturbations we performed
a few experiments where a high concentration of blue organic dye (methylene blue)
was introduced in to the upper fresh water. During the initial release of the cylinder,
the density gradient was almost vertical and, when the density front just started to
propagate radially, a strong horizontal velocity shear appeared. During this stage
(t=0.1-0.2T,), a first unstable perturbation having a short wavelength grows very
quickly (figure 13a). This wavelength is of the same order of magnitude as the
viscous diffusion length L,=./vT; (2-4mm) which is expected to give the initial
size of the velocity gradient. Then, as far as the density front propagates, the shear
region increased. Hence, the velocity gradient and the interface slope are reduced.
The wavelength of the azimuthal perturbation increased and spiralling rolls became
visible (figure 13c). At this stage (t ~0.5-0.7T), when the density anomaly reached its
maximum extension and started to reverse, we probably observed a combination of
shear layer and Kelvin—Helmholtz instabilities. We can roughly estimate a Richardson
number for the initial phase of adjustment

gdp _gd ghod _d

=— K2 — & — 7.1
p(BZV)z V2 V2 ho h() ( )
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FiGURe 13. Dye visualization of azimuthal and three-dimensional perturbations at the initial
stage of adjustment (a) t = 0.37y, (b) 0.5T, (c) 0.7T;, to (d) 1.7T;. The parameters for this
experiment were close to those of figure 4: Bu=0.4, § =0.08 and o =0.7. (¢) The wavelength of
the first perturbation @, Z;,;; and the O, spiralling arms A5 are plotted versus the deformation
radius.

assuming that the density front speed V satisfies a Froude number close to unity,
which is generally the case for non-rotating density current. In this case, Ri is directly
proportional to the ratio of the density gradient thickness d with the mean lens
thickness h¢. Since d is smaller than Ay (figure 2) this Richardson number could
have, during the initial phase of adjustment, a small value below the threshold of
Kelvin—Helmoltz instability. Unlike the initial perturbation, the wavelength of the
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spiralling arms depends on the deformation radius (figure 13e). This latter is also the
characteristic distance of the density front propagation. After the first oscillation of the
mass anomaly (i.e. after one inertial period 7) the three-dimensional perturbations
disappeared and the flow was almost axisymmetric (figure 13d).

A high fraction of the initial potential energy released during the adjustment process
is dissipated by these transient three-dimensional instabilities. Both the amount of
energy transferred 1 — U/U, and the energy dissipated Ep/ Uy increase with the
Burgers number (figure 14a). The dissipation could affect up to 80% of the released
energy. Hence, it strongly changes the energy budget predicted by the non-dissipative
adjustment model based on Lagrangian conservation of PV. The influence of the
Burgers number on the dissipation is emphasized when we look at the repartition
of the mean flow kinetic energy and the wave energy (figure 14b). These two terms
are well below the predicted values. We may note that the density front propagation
d=R;—R. (see figure 6) scales with the Rossby radius. Hence, the area where
the three-dimensional perturbations grow, described in figure 13, increases with the
deformation radius and the energy dissipation is then also expected to increase with
the Burgers number.

According to the above analysis, the main dissipative mechanism that occurs during
the adjustment process depends on the relative scale of the mass anomaly, the Burgers
number. We may ask what other parameter could control the fraction of energy
dissipated? On one hand, the molecular viscosity could play only a stabilizing role on
the shear layer or the Kelvin—-Helmholtz instabilities. Therefore, even if a weak effect
of the Reynolds number Re could be found, we do not expect a significant reduction
of dissipative processes for higher Re that are reached in larger-scale experiment or in
the atmosphere and the oceans. On the other hand, the front steepness « was of finite
value and kept constant in the experiments. This parameter is expected to control
the amplitude of non-hydrostatic and three-dimensional motions. Therefore, it could
affect the fraction of energy dissipated during the transient instabilities.
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8. Conclusion

We investigated the nonlinear cyclo-geostrophic adjustment of a circular density
front in a two-layer fluid. This configuration corresponds to a rapid input of potential
energy in a geostrophic fluid layer. We focused our efforts on the visualization
techniques in order to have simultaneous and independent measurements of both the
horizontal velocity field and the vertical density field. We thus obtained, for the first
time, quantitative measurements on the potential vorticity, the flow balance and gave
an estimate of the energy budget after a geostrophic adjustment process.

Surprisingly, even if during the early stage of adjustment, strong three-dimensional
motions (plume structures, shocks and rapid transient instabilities) occur, the density
profile and the potential energy of the mean adjusted state observed in the experiments
are in good agreement with the prediction of the standard non-dissipative adjustment
theory. This results from the fact that dissipative effects are significant in the frontal
region only. Therefore, the potential vorticity conservation is verified except in this
region.

Nevertheless, the transient and three-dimensional instabilities that occur during the
very first stage of adjustment are an efficient mechanism of turbulent dissipation which
rapidly cascades energy toward small scales in the frontal region. This mechanism
strongly changes the velocity and the energy budget predicted by the standard Rossby
adjustment theory. These three-dimensional motions localized in time (less than one
inertial period) and space (edge of density front) could dissipate up to 50% of the
initial energy of the system. Both the kinetic energy of the mean adjusted state and the
energy transferred to inertia—gravity waves modes are significantly reduced by these
dissipative processes. Hence, we have shown here that, for a rapid input of energy,
the adjustment process cannot be separated from the development of small-scale
barotropic instabilities. In such cases, the energy transferred to the non-geostrophic
wave motion will be generally overestimated by the standard adjustment principle or
by general circulation models where subgrid dissipation is difficult to parameterize.
Therefore, it would be interesting to investigate further the rapid barotropic instability
observed during the initial stage of the adjustment as well as the effect of wave
breaking in the frontal region in order to provide an accurate parameterization
of these processes. Our results indicate that the energy dissipated varies like the
Burgers number. We are at present investigating further the energy budget using
direct numerical simulations.

This experimental study provides some insights on rapid adjustment processes that
occur in the ocean for instance in upwelling fronts, meso-scale eddies like warm
core rings (e.g. Csanady 1979; Flierl 1979) and possibly during the spreading phase
of dense water observed during convective events. In particular, Flierl (1979) used
a frontal eddy model assuming a PV patch and cyclo-geostrophic equilibrium for
warm core eddies. Such a dynamical structure, which exhibits a strong velocity shear
at the edge of the density anomaly, will necessarily experience three-dimensional
instabilities in the frontal region as in our experiments. Flierl (1979) has shown that
while theoretical predictions are in good agreement with the interface profile of the
observed warm core eddies, they overestimate the observed velocities. This discrepancy
is similar to our results, even if the warm core eddy of the Gulf Stream experiences
probably a weaker dissipation than the one generated by the dam-break adjustment.
Hence, an eddy model assuming both a discontinuity in the velocity and the potential
vorticity is not realistic for oceanic vortices. In such a case, the classical scenario
of geostrophic adjustment is strongly modified and the mean adjusted state cannot
satisfy the PV conservation in the frontal region. Nevertheless, we could ask if a
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standard frontal model assuming just a PV discontinuity, with a continuous velocity
profile (Gill 1982; McWilliams 1988; Boss & Thompson 1995; Kuo & Polvani, 2000)
could reach an adjusted state without experiencing three-dimensional dissipation.
Laboratory investigations on the adjustment of these smoother density fronts are
under progress.
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